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Let An<z> be the n-square (0,1)-circulant of the type

<z> = (0, t 2 ,  t 3,...,f t k -1,  t0 .

Define the associated polynomial of type <z>:

t t-t 2  t-t 3  t-tk_ 1,X - x - x . . .X-

where t = tk . The key matrices in the construction of our
recurrence relations are: nl, the companion matrix of the
associated polynomial, and r', its rth permanental compound,

r 1, 2,..., t - 1 (that is, 11r is the [ J-square matrix

whose entries are subpermanents of order r of ni, arranged in
lexicographic order in rows and columns). Let the product of
the distinct polynomials of these permanental compounds be

t-1 m

f(M) IT det(XI - nr) = Xm - ciXm-i. (3)

r=1 i=l

It is shown in [1] that f(X) induces the recurrence relation

m

per(An <z>) Z ci per(An-i<z>) + 2f(1). (4)

i=1

Clearly the method will yield a recurrence formula for
permanents of (0,1)-circulants of any type, provided that the
cha-acteristic polynomials of matrices nr, r = 1, 2,..., t - 1,

can be computed. Now, nr is a r ]-square matrix, and therefore

the largest of its permanental compounds is [[t/ 2 ]j-square.

Its characteristic polynomial can be computed if t is not
excessively large. Even if t is as large as 12, it should be
possible to compute the 6th permanental compound of the
12-square companion matrix of the associated polynomial, if not
directly then by constructing it as a transformation matrix (see
(1]), and hopefully the characteristic polynomial of such
924-square matrix can be evaluated. Obviously there are many
(0,1)-circulant types with t 12, and for each of them our
method can be used to produce a linear recurrence relation.
Unfortunately polynomial (3) cannot be computed by direct methods
for larger t. The problem is how to find an efficient algorithm
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for constructing the characteristic polynomial of the rth
permanental compound of a matrix M directly from the
characteristic polynomial of M (see [2]). The problem is
unsolved.

Even if a recurrence formula can be constructed for a certain
type of (0,1)-circulants, it cannot be used for the purpose of
evaluation of permanents until the appropriate initial values
are computed, and these cannot be evaluated, by any known method,
for t 5. For larger values of t, the most that can be hoped
for is the evaluation of the asymptotic function

e<z> = lim (per(An<z>))l/n

The linear recurrence relation (4) implies that
m

n
per(An<Z>) dip i +d+

i:1

where the d i are constants, and the pi are the roots of poly-
nomial f() in (3), P1  IP21 L ' . mi. Hence

e<z> = P1 , (5)

where p, is the largest root of polynomial f(X), and thus the
largest of the Perron roots of the permanental compounds of HI.
Unfortunately, it is not known how to evaluate the Perron root of
a permanental compound of a given nonnegative matrix, even if the
latter happens to be a companion (0,1)-matrix, without actually
constructing the permanental compound, which is feasible for
small t only (see [2]). Nevertheless, we can obtain an upper
bound for e<z> in terms of Perron roots of fl, and Rt_ ,
which are t X t matrices, in the following way.

Minc showed in [31 that:

THEOREM I. If 11 is the companion matrix of the polynomial

Xt  - a Xt-I - a2xt-2 _ .... at_2X2 _ atlX - 1,

then Nt-1, the (t - 1)st permanental compound of 1I, is the
transpose of the companion matrix of the polynomial

Xt ati xt -i - at_ 2  _ - a-- - 1.

THEOREM II. The rth permanental compound of IT1 is permuta-
tionally similar to the (t - r)th permanental compound of nt-1,
2 ! r t - 2.
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The rth permanental compound of e matrix A is a principal
submatrix of P (A), the rth induced matrix of A. Thus if A
is nonnegative then the Perron root of the rth permanental
compound matrix of A cannot exceed that of Pr(A). Recall that
if a is the Perron root of A then the Perron root of Pr (A),
its induced matrix is ar. Now, for any type of (0,1)-circulant,
matrices ni and Nt-1 can be written out without any diffi-
culty (see +heorem I)', and their Perron roots can be computed by
standard methods. Let p and q be the Perron roots of IlI
and 1t_1, respectively. Then the Perron roots of Pi(fl) and

are p and qt-. It follows from equality (5),
Theorem , and the above remarks that

O<z> max min (pi, qt-i

i
Unlike the problem of finding the Perron root of a permanental

compound, the corresponding determinantal problem does not present
serious difficulties: the largest roots in modulus of the rth
(determinantal) compound of any matrix are just the products of
the r largest (in modulus) eigenvalues of the matrix. In [3]
we attempt to transform our permanental problem into a more
tractable determinantal problem.

Let IMI denote the matrix obtained from matrix M by
replacing each entry of M by its absolute value. A real t X t
matrix A is said to be r-convertible if there exists a matrix
B such that (i) IBI = IAI, and (ii) the rth (determinantal)
compound of B is equal to the rth permanental compound of A.
Matrix A is called convertible if it is r-convertible for every
r, 2 < r t - 1. Question: Are the companion matrices of
polynomials associated with (0,1)-circulants convertible?
It is shown in (3] that the only nontrivial (0,1)-circulants
whose associated matrices have convertible companion matrices are
of the following three forms:

t-1 t t t-1 t
+ +P, or I + P + Pt, or I+P +P

The answer is rather disappointing, although the three forms

represent a variety of interesting types.

Let Xl, X 2 ,..., t, where X I > 21 I X31 - Xt,

and Ul 2 ,...I Ut' where IUlI ; Ig21 ... Igti, be the

roots of Xt - Xt- I - X - 1 and Xt - X t - I + X + 1, respectively.
The following result, obtained in [3], is established by con-
verting the companion matrix of the first of these polynomials
into matrix B which satisfies conditions (i) and (ii) above.
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THEOREM III. Let

An <z> I~ n+ P + Pt-i + Pt.

If t 0 mod 4, and t 2s, then

O<z> = max [XiX2-'. s-i, 0 142 . . s) .

If t 2 mod 4, and t = 2s, then

O<z> = max {Xk2.Xs, 9 l'2 -*ss-i.

If t is odd, then

O<z> = max { X .. xk }

Now iet X1 , X2 ,..., Xt , wnere X1 > IX2 1 3t

and 1, g2 ,.', t, where ku'1 li2 1" tl, be the roots

of t _ Xt-1 - 1 and Xt _ Xt-1 + 1, respectively. We have the
following result [3).

THEOREM IV.

Let An<z'> = In + P + Pt and An<z"> In + pt- + pt Then

O<z'> = O<z"> = max max {)lX2'' 2 i' max (u''g~jj

The products of roots in Theorems III and IV can be conveniently
evaluated by means of the classical root-squaring method
(see (3]).

The results obtained in papers [I] and [3] were presented by
Minc at the 1986 International Congress of Mathematicians in
Berkeley.
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2. MINIMUM PERMANENTS OF DOUBLY STOCHASTIC MATRICES WITH
PRESCRIBED ZERO ENTRIES.

A doubly stochastic matrix is a nonnegative matrix all of
whose row and column sums are 1. The set of n X n doubly
stochastic matrices is designated by an" The n X n doubly
stochastic matrix all of whose entries are 1/n will be denoted
by Jn".

In 1916 K6nig showed that the permanent of any doubly
stochastic matrix is positive. This gave rise to the famed
van der Waerden permanent conjecture:

If A G an and A w Jn' then per(A) > per(Jn) zn!/nn.

In other words: The permanent function achieves its minimum in
an uniquely at Jn"

In 1959 Marcus and Newman proved the conjecture holds for
n = 3. In 1968 Eberlein and Mudholkar proved it for n = 4 , and
a year later Eberlein proved the conjecture for n = 5. Marcus
and Newman showed that Lhe van der Waerden conjecture holds for
positive semidefinite doubly stochastic matrices, and this result
was later extended by others to larger classes of doubly
stochastic matrices. In 1962 Marcus and Minc proved that the
permanent of any matrix in a is larger than 1/nn , and in
1979 Friedland improved this ound to I/en. The story reached
its climax in 1981 when Egorycev and Falikman independently
provcd the van der Waerden conjecture. The main idea of the
proof is to show that all permanental cofactors of a minimizing
matrix in a n (i.e., of a matrix with minimum permanent in Q
are equal to the permanent of the matrix. This implies that
any columns (or rows) of a minimizing matrix are replaced by
their average, then the resulting matrix is also minimizing in
an' This averaging process can be also used to show that Jn
is the only minimizing matrix in an.

After the appearance of Egorycev's and Falikman's proofs many
efforts have been made to exploit their techniques in problems of
determination of the minimum permanents in various faces of an.
A face of a can be defined by specifying the position of
prescribed fixed zeros. Specifically, a subset Z of N X N,where N = (1, 2,..., n), defines the face

nn(Z) = {S = (sij) G nnlSi = 0 whenever (i,j) E Z},

provided that the set is not empty. Unfortunately the key
technique of averaging lines of a minimizing matrix in a face
an(Z) is severely restricted by the presence of zeros in fixed
positions. In fact, this technique cannot be used in some cases
at all; e.g., in case of a face consisting of matrices with zero
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main diagonal. On the other hand, it can be shown that theorems
of Marcus and Newman and of London on minimizing matrices in an
can be extended to minimizing matrices in a face of an:

(i) If A = (a..) is a minimizing matrix in an(Z) and
ast > 0, Itien per(A(slt)) = per(A).

(ii) If A = (ai ) is a minimizing matrix in an(Z) and
ast CE Z, ten per(A(slt)) per(A)

Knopp and Sinkhorn determined the minimum permanent in a face
of an with exactly one prescribed zero, and Friedland extendedn
this result to faces in which prescribed zeros form a submatrix.
Both results can be easily obtained by means of the averaging
process. In 1984 Minc found the minimum permanents in all faces
an(Z) in which Z is restricted to two rows or two columns. This
is a complicated result. In fact, the minimum is, in general, an
irrational number.

The problem of determining the minimum permanent for doubly
stochastic n X n matrices with k prescribed zeros on their
main diagonal (or any other diagonal) presents considerable
difficulties , since the Egorycev-Falikman techniques can have
only a limited application. For k 3 the problem is
completely unsolved, except for the case k = n = 4 which was
solved recently by London and Minc [7] who showed that the
minimum permanent in this case is equal to 1/9, and it occurs
only for the matrix all of whose off-diagonal entries are 1/3.
It is hoped that this result will allow us to solve the case
k = 3 and n = 4, which is still unsolved. In fact, apart from
the London-Minc result, it is not known, for k 3 and n 4,
whether in the set of n X n doub]y stochastic matrices with k
prescribed zeros in the main diagonal the permanent function must
achieve its minimum at a symmetric matrix. In 1985 Brualdi
conjectured that for k = n - 1 the minimum is achieved uniquely
for the matrix whose last row and last column entries are all
equal to 1/n, and all its other off-diagonal entries are
(n-1)/n(n-2). In [51 Minc showed that Brualdi's conjecture is
false for all n 5, and determined the unique minimizing
matrix assuming that in the set of doubly stochastic n X n
matrices with zeros in the first k - 1 main diagonal positions,
the permanent is minimum for a matrix whose off-diagonal entries
ouside its last row and last column are all equal (the assumption
is tantamount to an affirmative answer to a problem proposed by
Brualdi). The general problem appear to be very difficult. It is
unsolved even for n = 4. In this case, of course, k = 3. The
general problem for k = 3 is also unsolved. In [8] Minc has
found the minimum permanent for k = 3 and for any n, assuming
that the minimum does occur at a symmetric matrix (see Theorem V
below).
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The proof of the London-Minc result amounts to finding the
minimum of the permanent of matrices of the form

0 -E 1 B+E 2  Y+( 1 -E 2

+I 0 >-E 3  3-EI+E 3

3-E 2 -Y+E3 0 a+E 2 -E 3

1-Ei+E 2 B+El-E 3 a-E 2 +E 3  0

where a, e, 7 are nonnnegative numbers satisfying

a + 0 + - = 1,

and E1, E2, E3  satisfy{ 1 2  - 3 1, 1E11 c-

IE3  - E1 1, 1E2 1 3 B,

I1 - 2 , 1E3 1 ,v.

Expanding the permanent of the above matrix we obtain, after some
simplifications,
per(A) = (a2 + 62 + -Y2)2 + (2aB - 72)Ml1 + 2 - 23)2

+ (2cuY - 8 2 )((l - E2 + E 3 ) 2 + (2B - a 2 )(-( 1 E2 + E 3 )2

+ 2 _ 2 + -2 ( E _ , ) 2 ,, ' I3 + ( 2 ( E I E 2 ) 2

a2 d- I~ 2 2 2

+ 2t~E 2 (E3  - 11)(E 3  - ' 2 ) + 2 iEc3 ('2  - ,1i)({2 - ' 3 )

+ 2E 2E3 ({ - {2)(El - ' 3 ).

In order to have a movej manageable expression for per(A), we
apply the transformation

{ x = + 2- E 3 '

y = E 1 - f2 E3'

z = -E I  + (2 + (3f

. ....... .. .. .------ - - I i ml n # 8



We can then reduce our theorem to the following optimization
problem:

Given the function

P P(a,B,7,x,y,z)

(C2 + B2 + 72)2 + (2aB 2 -722y 2 + (227 - 2)Z2

+ -(x
2  y2)2 + (y2 _ z 2 ) 2  + (z2  x 2 )2),

prove that

min P(a,Bc,x,y,z) 1/9,

where the minimum is over all (a,Bxy,z) satisfying the
constraints

U, B, v O, C + B + Y = 1,

x, y, z 0, x + y 2a, x - z S 22, y + z 21,

and that the minimum is attained uniquely for a = B 7 = 1/3,
X y = Z 0.

The problem is solved in (7].

In (8] the following result is obtained.
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-HtTIyi3R V. 'f a minimizing matrix in n(Z), where
Z (I, 1), (2, 2), k3, 3)1, is symmetric, then its permanent
is equal to the permanent of

0 a a ... a(

- 0 1 0 C .a . a

1 0 C cx .

a aX a B B

where cx, B, i are positive number. satisfying

27 + (n-3)a = 3a + (n-3)3 1, and

c(33 2y2 + 4(n-4) 2B' + (n-4)(n-5)a 
4)

= 0(B 272  + 3(n-3)a22B' + (n-3)(n-4)a
4).

The minimum permanent is then equal to

(n3)!3n-5(82-Y2 + 3(n-3)a2B2 + (n-3)(n-4)a
4)

= (n-3)!Bn-5(c 4B
4 + C3B

3 + c2B2 + cis + C0),

where

c 4  = (n-3)
4 (4n 2  

- iOn + 3), c3 = -2(n-3) 2 (8n3  - 53n 2  + 84n - 18),

c2 = 3(8n 4 
- 86n 3 + 309n 2 -414n +162),

cl = -2(n-3)(8n 2 
- 47n + 42), and co 4(n-3)(n-4).

For n = 5, the permanent is minimum for the matrix of form (1)
with a 0.2214294, B = 0.1678559, 1 = 0.2785708 (correct to
seven significant figures; all three values being irrational).
The minimum permanent is equal to 0.04150119.

For n = 4, the permanent is minimum for the matrix of the
form (1) with a = B = 1/4, 7 = 3/8. The minimum permanent is
equal to 27/256.

There is only one symmetric doubly stochastic matrix with
three zeros in a diagonal; its permanent is 1/4.
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The main tool in proving the theorem is the following lemma.

Let A be a minimizing matrix in a face a n(Z). If rows

il' J.2? of A have the same Z pattern, then the
matrix obtaine from A by replacing each of these rows by their
average is also minimizing in an (Z). An analogous result holds
for columns of A with the same Z pattern.

The lemma implies that if there exists a symmetric minimizing
matrix in n <Z>, then the face an <z> contains also a
minimizing matrix of the form

0 ' 2  a 3  C3 "x 3

I 0 3 2 2 " ' " 2

"2 '3 0 Cl a '"1  1

a a ( Cf B 3 (6)

3 2 1
a 3  K2  a B B • B

a 3  a2  C(1  J ... B

Now, if all the entries in the minimizing matrix (6), other than
the three leading entries in the main diagonal, are positive,
then it can be shown, by repeated use of theorem i) on page 7,
that a I  a? = a3 . The minimum value of the permanent can be
then computecl. Finally it is proved in [8], using theorems (i)
and (ii) on page 7, that if any of the a. or the 1i is zero,
or if B is zero, then the matrix of form (6) cannot be
minimizing in a n(Z).

The results obtained in papers [5], [7], [8] together with
parts of section 5.5 in book [6] were presented by Minc in a
plenary address at the 1988 St. Andrews Mathematical Colloquium
of the Edinburgh Mathematical Society.
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3. NONNEGATIVE MATRICES.

The monograph Nonnegative Matrices [6] is an advanced book on
all aspect of the theory of nonnegative matrices and some of its
applications. It contains seven chapters: on spectral properties
of nonnegative matrices, localization of the maximal eigenvalue,
primitive and imprimitive matrices, structural properties of
nonnegative matrices, doubly stochastic matrices (including a
self-contained proof of the van der Waerden conjecture), other
classes of aonnegative matrices (stochastic matrices, totally
nonnegative matrices, oscillatory matrices and M-matrices),
and on inverse eigenvalue problems for nonnegative matrices.
The work explores some of the most recent developments in the
theory of nonnegative matrices. The last two chapters of the
book were written during the period of the contract.
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linear recurrence relations for permanents of (0,1)-circulants of
type (0, 1, 2,..., k-1). In [1] Minc generalized their method to
any (0,1)-circulants.



method can be used to produce a linear recurrence relation.
Unfortunately polynomial (3) cannot be computed by direct methods
for larger t. The problem is how to find an efficient algorithm
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THEOREM II. The rth permanental compound of n I is permuta-
tionally similar to the (t - r)th permanental compound of lt!
2 : r S t - 2.
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into matrix B which satisfies conditions (.1) anu ~±
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